

DPP No. 18

Total Marks: 36

Max. Time: 39 min.

Topics : Calorimetry & Thermal Expansion, Electrostatics, Work, Power and Energy, Rigid Body Dynamics, String Wave, Geometrical Optics

Type of Questions		M.M., Min.
Single choice Objective ('–1' negative marking) Q.1 to Q.5	(3 marks, 3 min.)	[15, 15]
Subjective Questions ('–1' negative marking) Q.6	(4 marks, 5 min.)	[4, 5]
Comprehension ('-1' negative marking) Q.7 to Q.9	(3 marks, 3 min.)	[9, 9]
Match the Following (no negative marking) (2 × 4)	(8 marks, 10 min.)	[8, 10]

1. Water of mass $m_2 = 1$ kg is contained in a copper calorimeter of mass $m_1 = 1$ kg. Their common temperature t = 10°C. Now a piece of ice of mass $m_3 = 2$ kg and temperature is -11° C dropped into the calorimeter. Neglecting any heat loss, the final temperature of system is. [specific heat of copper = 0.1 Kcal/ kg°C, specific heat of water = 1 Kcal/kg°C, specific heat of ice = 0.5 Kcal/kg°C, latent heat of fusion of ice = 78.7 Kcal/kg]

(A)
$$0^{\circ}$$
C (B) 4° C (C) -4° C (D) -2° C

- 2. Two identical spheres of same mass and specific gravity (which is the ratio of density of a substance and density of water) 2.4 have different charges of Q and - 3Q. They are suspended from two strings of same length ℓ fixed to points at the same horizontal level, but distant ℓ from each other. When the entire set up is transferred inside a liquid of specific gravity 0.8, it is observed that the inclination of each string in equilibrium remains unchanged. Then the dielectric constant of the liquid is (A) 2 (B) 3 (C) 1.5
- 3. A block of mass 10 kg is released on a fixed wedge inside a cart which is moved with constant velocity 10 m/s towards right. Take initial velocity of

(D) None of these

(A) zero	(B) 960 J
(C) 1200 J	(D) none of these

respect to ground) on block in two seconds will be: $(g = 10 \text{ m/s}^2)$.

block with respect to cart zero. Then work done by normal reaction (with

4. If the frequency of a wave is increased by 25 %, then the change in its wavelength will be: (medium not changed)

(A) 20 % increase (B) 20 % decrease (C) 25 % increase

(D) 25 % decrease

5. The moment of inertia of a thin sheet of mass M of the given shape about the specified axis is

(A) (3/2)MR ²	(B) (3/4)MR ²
(C) MR² (1 + 1/√2)	(D) MR²/(2√2)

6. AB wire is vibrating in its fundamental mode. Wire AB is in resonance with resonance tube in which air column is also vibrating with its fundamental mode. Sound speed is 400 m/sec and linear mass density of AB wire is 10^{-4} kg/m and g = 10 m/sec², value of mass m = $[\beta(10^{-1})]$ kg, then find value of β .Neglect the masses of wires in comparison to block's mass 'm'.

🕀 www.studentbro.in

COMPREHENSION

A glass prism with a refracting angle of 60° has a refractive index 1.52 for red and 1.6 for violet light. A parallel beam of white light is incident on one face at an angle of incidence, which gives minimum deviation for red light. Find :

[Use: sin (50°) = 0.760; sin (31.6°) = 0.520; sin (28.4°) = 0.475; sin (56°) = 0.832; $\pi = 22/7$]

- 7.
 The angle of incidence at the prism is :
 (A) 30°
 (B) 40°
 (C) 50°
 (D) 60°
- 8.
 The angular width of the spectrum is :

 (A) 6°
 (B) 4.8°
 (C) 9.6°
 (D) 12°
- 9. The length of the spectrum if it is focussed on a screen by a lens of focal length 100 cm is :

(A)
$$\frac{10\pi}{3}$$
 cm (B) $\frac{10\pi}{3}$ m (C) $\frac{5\pi}{3}$ cm (D) $\frac{5\pi}{3}$ m

10. The column I gives the two point charge system separated by 2a and the column II gives the variation of magnitude of electric field intensity at point on the x-axis. Match the situation in Column I with the results in Column II and indicate your answer by darkening appropriate bubbles in the 4 × 4 matrix given in the OMR.

(B)
$$x' \xleftarrow{q} \xrightarrow{-q} (a, 0) (0, 0) \xrightarrow{a} (a, 0) (a, 0)$$

(0,+a)

(0, 0)

(0,-a)

(0, 0)

(C)

(D)

Column – II

(p) Increases as x increases

in the interval $0 \le x < a$

(q) Decreases as x increases

in the interval $0 \le x < a$

(s) Decreases as x increases in the interval a < x < ∞

Answers Key

1.	(A)	2.	(C)	3.	(B)	4.	(B)
5.	(B)	6.	6	7.	(C)	8.	(A)
9.	(A)	10.	$(A) \rightarrow$	· (p, r,	s),	$(B) \rightarrow ($	(p, s),
(C)	\rightarrow (r, s),	(D)	\rightarrow (q,	s)			

<u>Hints & Solutions</u>

1. Loss in heat from calorimeter + water as temperture changes from 10° C to 0° C = $m_1C_110 + m_2C_210$ = 1 × 1 × 10 + 1 × 0.1 × 10 = 11 kcal Gain in heat of ice as its temperature changes from -11° C to 0° C = $m_3C_3 \times 11 = 2 \times 0.5 \times 11 = 11$ kcal Hence ice and water will coexist at 0° C without any phase change.

3. Because the acceleration of wedge is zero, the normal reaction exerted by wedge on block is $N = mg \cos 37^{\circ}$.

The acceleration of the block is g sin 37° along the incline and initial velocity of the block is v = 10 m/s horizontally towards right as shown in figure.

The component of velocity of the block normal to the incline is v sin 37°. Hence the displacement of the block normal to the incline in t = 2 second is

S = v sin 37° × 2 = 10 ×
$$\frac{3}{5}$$
 × 2 = 12 m.

... The work done by normal reaction

W = mg cos 37° S = 100 ×
$$\frac{4}{5}$$
 × 12 = 960 J

4. Since, the medium has not changed, speed of wave remains same.

$$\Rightarrow v = f\lambda = \text{constant}$$

$$f_1\lambda_1 = f_2\lambda_2$$

$$\Rightarrow f_1\lambda_1 = (1.25f_1)\lambda_2$$

$$(\because \text{ frequency increased by 25\%})$$

$$\Rightarrow \lambda_2 = \frac{\lambda_1}{1.25}$$

 $\Rightarrow \lambda_2$ decreases.

⊥ T₀

 $T_{a} = 2T_{a} = 2\left[\frac{2m(2m)}{2m(2m)}\right]q$

 \Rightarrow % change in wavelength

$$= \frac{\lambda_1 - \lambda_2}{\lambda_1} \times 100 = \frac{\lambda_1 - \frac{\lambda_1}{1.25}}{\lambda_1} \times 100$$

$$= \frac{0.25}{1.25} \times 100 = \frac{100}{5} = 20\%$$

Get More Learning Materials Here : 💻

6.

🕀 www.studentbro.in

$$T_{1} = \frac{8m}{3} 9 = \frac{80m}{3} \qquad \dots \dots (i)$$

In resonance,

$$f_{wire} = f_{tube}$$

$$\frac{(1)V_{1}}{2\ell_{1}} = \frac{(1)V_{2}}{4\ell_{2}}$$

$$\frac{\left(\sqrt{\frac{T_{1}}{\mu}}\right)}{2(x)} = \frac{(400)}{4\left(\frac{x}{2}\right)}$$

$$\Rightarrow T_{1} = \mu(16 \times 10^{4})$$

From (i),

$$\frac{80}{3} m = 10^{-4} (16 \times 10^{4})$$

m = 0.6 kg.
7.

$$\mu_{R} = 1.52$$

$$\mu_{V} = 1.6$$

Minimum deviation condition for red is r = 30°

$$\Rightarrow (1) \sin i = (1.52) \sin 30°$$

 $i = 50°$,

$$\delta_{R} = (50°) 2 - 60°$$

 $= 40°$
8. For violet light
(1) sin 50° = (1.6) sin r

$$\therefore r = 28.4°$$

 $r' = 31.6° (\because r + r' = A)$
(1) sin e = (1.6) sin 31.6°

$$\therefore e = 56°,$$

$$\Rightarrow \delta_{V} = i + e - A = 50° + 56° - 60°$$

 $= 46°$

$$\therefore angular width = \delta_{V} - \delta_{R} = 6°$$

9. The length of the spectrum if it is focussed on a screen by a lens of focal length 100 cm is :

(A*)
$$\frac{10\pi}{3}$$
 cm (B) $\frac{10\pi}{3}$ m
(C) $\frac{5\pi}{3}$ cm (D) $\frac{5\pi}{3}$ m

Sol. if $\theta = 100 \times 6 \times \frac{\pi}{180} \text{ cm} = \frac{10\pi}{3} \text{ cm}$

10. (A) \rightarrow (p, r, s), (B) \rightarrow (p, s),(C) \rightarrow (r, s), (D) \rightarrow (q, s)

Get More Learning Materials Here : 💻

